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Abstract 

This document provides what is hopefully a relatively easy-to-understand introduction, suitable for 

someone with undergraduate physics training, to the power spectral analysis of the cosmic microwave 

background (CMB), as unveiled by the COBE, WMAP, Planck and other experiments of the past two decades. 

It proceeds step-by-small-step at a moderate (by physics standards) level of mathematical sophistication, and 

can serve as a simplified initial foundation for those wishing to enter the field, or for others who simply desire a 

more in-depth understanding of the CMB than the online popular accounts offer. It is half way between those 

online popularizations and typical cosmology textbooks. 

 

 

Full disclosure 

I am not a researcher/expert in this topic, but feel I can offer a fair pedagogic introduction to some areas of 

the subject for others like me who have physics backgrounds, but are not working in the field. Suggestions and 

corrections are always welcome via the feedback link on the home page above (which also contains links to 

pedagogic treatments of other physics topics). 

         RDK 



 

 

Two Parts to This Document 

This document is divided into two main parts, the basic introduction and the appendices. The basic material 

covers the physical mechanisms giving rise to the cosmic microwave background (CMB) and how we analyze 

the CMB using spherical harmonics. The appendices provide a fairly in depth development of spherical 

harmonic analysis and power spectral analysis, for those not completely at home with them. The first part 

comprises 23 pages; the appendices, 17 pages. 
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1 The Cosmic Microwave Background Power Spectrum 

If you are reading this, you have no doubt seen the diagram of Fig. 1. It shows the now famous cosmic 

microwave background (CMB) power spectral analysis of temperature variations across our sky. In this 

document, I try to present an introduction to it (where it comes from, what is the math behind it, and what it 

means) that is reasonably transparent to anyone with an undergraduate background in physics. 
 
 

Figure 1. Power Spectrum of the Cosmic Microwave Background Variations 

 

[Added May 15, 2019 ] The CMB today makes up 99.99% of all radiation in the universe. 

2 Spatial Temperature Variations from Early Quantum Fluctuations 

In this section, we do a brief overview of where the temperature variations of the cosmic microwave 

background (CMB) come from.  

2.1 Traveling Pressure (Acoustic) Waves from Quantum Fluctuations 

Tiny spatial variations in one or more quantum fields right after the big bang lead to spatial variations in 

mass-energy density. These variations grow to macroscopic scales via inflation and the subsequent expansion of 

the universe. Such variations comprise regions of greater mass-energy density and regions of lesser mass-

energy density. The denser regions attract other matter and initially the dense regions grow denser and the 

rarefied regions grow more rarefied. This process would simply continue except that a pressure develops in the 

denser regions that begins to repel the matter moving toward them. The pressure arises as follows. 

For the first 380,000 or so years after the big bang, temperature was so high that atoms could not form, and 

the universe consisted of a “soup” (a plasma really) of elementary particles interacting with one another. The 

primary interactions were electromagnetic ones between charged baryons and photons, which were continually 

and frenetically bouncing off one another. Thus, the photons exert a pressure on the baryons. If mass-energy 

were distributed completely evenly, the pressure, as in a static perfect fluid, would be the same everywhere. 
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However, as the denser regions attract mass-energy (baryons and photons) from the less dense regions, the 

e/m interactions in the denser region increase, thus increasing the pressure in that region. This pressure builds 

until it ultimately repels the incoming mass-energy and causes incoming baryons to rebound. The rebounding 

baryons form a pressure wave that propagates. 

This is just what happens with sound (acoustic) waves, although the pressure there is due to gas molecules 

interacting with other gas molecules, not photons. With everyday sound waves, high and low density regions 

propagate due to the pressure variations between those regions. The speed of those waves for an ideal gas 

(which the plasma approximates) is 

 soundc k p /   (1) 

where p is pressure,  is density, and k is an appropriate constant. 

Thus, the baryon-photon plasma ends up with a whole spectrum (all different wavelengths) of essentially 

acoustic waves propagating through it in all directions.  

Note that photons interact with electrons as well as baryons, but the mass of the electrons is so much 

smaller than that of the baryons that they are effectively “slaves” to the motion of the baryons and carried along 

with them. Their effect is insignificant, so they can be ignored. 

2.2 Traveling Waves to Standing Waves 

From elementary physics we know that two oppositely moving waves (along a string for example), will 

form a standing wave if they have the same wavelength. See Fig. 2. 

Note that if traveling waves have different wavelengths, they will destructively interfere and not produce a 

standing wave. On average, waves of differing wavelengths will cancel one another out, but those of the same 

wavelength will tend to produce standing waves. 

Over a given length (say of string between two walls) L, the standing waves formed must have lengths of 

n = 2L/n, where n = 1, 2, …∞. The fundamental wave (n = 1) would have  = 2L, i.e., it would have nodes at 

its ends (as in no motion where the string is pinned to the walls on either end) but none intermediate. (See the 

LH side of Fig. 3 below.) It would be half of a spatial sine wave oscillating up and down in time. The first 

harmonic (n = 2) would be a full sine wave with one node in the middle. Each higher harmonic would have one 

more node. Higher n means shorter wavelength and higher oscillating frequency in time , since csound = . 

 
Fig. 2 Standing Waves Forming from Traveling Ones 

 
 

The sound waves in the baryon-photon plasma interact with one another, destructively interfering in some 

regions and forming standing waves, via constructive interference, in others.  These standing waves are referred 

to as baryonic acoustic oscillations (BAOs). 

 
 

one standing wave

two traveling waves

(different times shown)

(same wavelength)
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2.3 Which Wavelengths Get Preferred (Form Standing Waves) 

Standing waves in the universe (at the 380,000 year mark) can only form over lengths equal to the distance 

an acoustic wave could travel in 380,000 years. At greater distances, traveling waves (traveling at the speed of 

sound for the medium) would not have time to completely overlap and form a standing wave. 

If we call the distance sound can travel in that 380,000 years L, then at that time, we would expect to find 

standing waves of wavelengths n = 2L/n. Only those, in the time available since the creation event, would be 

able to neatly overlap in a constructive way. Other wavelength waves would randomly cancel one another 

through destructive interference. 

We can think heuristically of L = (csound)(trecombin), where trecombin is 380,000 years in appropriate units, but 

note that due to pressure and density changes as the universe evolves, csound varies over time, so we would need 

to integrate to find L, rather than use a simple multiplication. Additionally, the universe continually expands, so 

any length L one might determine at one point in time gets stretched at later times. Cosmologists can readily 

make the appropriate calculations to get the distance L sound could travel from the first instant of creation up to 

the 380,000 year mark. 

 

Figure 3. Fundamental Standing Wave and First Two Harmonics 

All else being equal, the standing waves of wavelengths n would be spread randomly at different 

amplitudes and in different directions. 

2.4 Caveat on Wave Shape 

To keep things simple and illustrate a point, we have depicted the acoustic wave shapes as sinusoids, but 

they are actually more complicated. Certainly, the usual sound waves with which we are familiar typically have 

more diverse shapes, though they can be analyzed as summations of sinusoids via Fourier series analysis. In 

fact, from both theory and analysis of the CMB, it is believed that via inflation, the large scale BAOs emerged, 

at least in large part, from primordial quantum harmonic oscillator fluctuations. Further, it appears the 

fundamental (lowest) state of those oscillators was, by far, the largest contributor to the fluctuations. 

 From elementary QM, we know (look it up if you don’t recall) that the fundamental mode shape in space 

of a QM oscillator is Gaussian. See Fig. 4. The wave function , and hence its probability density |.|2, are 

normal (bell shape) curves in space. Thus, after inflation, the mass density would be expected to have similar 

shape. 
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Figure 4. Gaussian Wave Form in Space for Ground State of Quantum Harmonic Oscillator 
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The growth of pressure (sound) waves from density fluctuations described in Sect. 2.1 would then, via the 

appropriate dynamics, lead to sound waves (BAOs) of similar, Gaussian shape. So, the n = 1 wave of Fig. 3 

should be more Gaussian shaped than sinusoidal, though a Fourier analysis of it would have a large (half wave) 

sinusoidal component. Similarly, the peaks and valleys between nodes of the other modes (such as n = 2 and 3 

of Fig. 3) would actually be quite close to Gaussian shape. But again, a Fourier analysis would have large 

components corresponding to the sinusoids shown in Fig. 3. 

Even though the wave forms are more Gaussian than sinusoidal, we can still consider them to have modes 

of particular wavelengths (shorter for higher mode number n) with n + 1 nodes. We may, elsewhere in this 

document, depict the sound waves graphically as sinusoidal for simplicity, but keep the points of this section in 

mind as you contemplate that material. 

2.5 Phases of the Various Acoustic Waves  

Note that all the wave formation started at the same time. So, for example, all of the various fundamental  

modes (corresponding to n = 1 in Fig. 3) would have their corresponding traveling waves begin to propagate at 

the same time. They all propagate at the same speed and are subject to the same dynamics. So, the many 

different fundamental standing waves set up all over the universe would all be in phase in time and remain so as 

time progresses. Ditto for higher modes. Hence, all BAO standing waves throughout the universe having the 

same number of nodes remain in phase in time, i.e., all having the same mode number n peak at the same time. 

2.6 Pressure (Acoustic) Waves to Photons of Various Frequencies (Temperatures) 

Wherever the standing waves are denser, the pressure is higher. Higher pressure means hotter baryons 

(moving faster = higher energy). In interactions with photons, the baryons would impart more energy to the 

photons, resulting in higher frequency light emanating from the denser regions. Measuring the light frequency 

at a given point in space would then be equivalent to measuring temperature at that point. 

In short, for a local region of baryons, 

             higher     higher  p     higher T       higher frequency of  scattered. 

2.7 Freezing the Temperature (Photon Frequency) Patterns at 380,000 Years 

At around 380,000 years after the big bang, average temperature of the universe had fallen to the point 

where baryons could capture electrons and form atoms (mostly protons and electrons to form hydrogen, but 

small amounts of helium and lithium atoms were also formed.) This point in time is, strangely enough, called 

recombination, even though it was the first time particles combined to form atoms, not a “recombining”, which 

implies it had happened before. (And some think physics can be confusing….) [Added May 15, 2019 ] This 

naming is due to a historical misunderstanding of earlier epochs. A better name would be “decoupling”. 

Once recombination occurred, there was no longer a charged baryonic plasma scattering photons wildly 

and regularly. The atoms, with exceptions so rare as to not matter, did not scatter the photons, so the photons 

were effectively released from their electromagnetic bondage to baryonic matter. The photons streamed forth 

and spread outward through the rest of the universe. 

The key point is that at that moment (“cosmic” moment), the photon frequencies reflected the temperatures 

of the local regions they last were in contact with. These frequencies were, in effect, “locked in” until the 

present day. Those variations in frequency are what COBE, WMAP, Planck, and other experiments have 

recently measured. That, including the average background temperature/frequency at 2.725o K, is the cosmic 

microwave background radiation (CMBR). 

Note however, that due to the expansion of the universe since recombination, the frequencies of all photons 

have been reduced (wavelength stretched by expansion). This is taken into account when the photon frequencies 

data is analyzed. The relative differences remain as all photons are stretched by the same ratio by cosmic 

expansion (subject to some subtleties that we won’t get into). [Added May 15, 2019 ] The universe has 
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expanded (in a linear direction) by a factor of 1100 since recombination. This means the average distance 

between CMBR photons, which was about 1 cm upon release, is now about 11 meters. 

2.8 Phases of Different Modes at Recombination 

As noted in Sect. 2.5, pg. 4, for a given mode number, the various individual local standing waves of that 

mode are all in phase in time (but scattered all over randomly in space at different amplitudes) and peak at the 

same time. However, the different modes oscillate at different frequencies, so waves of different mode numbers 

peak at different times. This is illustrated for the lowest three modes in Fig. 5. 

Note that for fundamental (n = 1) mode oscillation frequency f.1, the nth mode has oscillation frequency 

equal to n.f.1. So in the time it takes the n = 1 mode to oscillate ¼ of a full cycle, the n = 2 mode has oscillated 

through ½ of a full cycle. And the n = 3 mode has oscillated through ¾ of a full cycle. 

Further, the fundamental standing wave at recombination (one hump as for n = 1 in Fig. 5) results from a 

local high density region acting as a gravitational attractor pulling in baryons. At recombination time, there has 

just been enough time to pull in baryons, but not enough time for pressure to have started them moving away 

from the center of the region. In other words, the n = 1 mode at recombination is a purely compressive hump. It 

is ¼ of the way through a full cycle (90o in phase). We will see that this results in the first peak shown in Fig. 1, 

pg. 1. 

 
Figure 5. Evolution of the First Three Standing Wave Modes to Recombination Time 

 

The n = 2 mode, on the other hand, with a compressive hump and a rarefied hump (three nodes), oscillates 

twice as fast as the n = 1 mode. So by the time of recombination, it has oscillated ½ of a full cycle (180o in 

phase). But that is simply a straight line. So we would not measure any real pressure/temperature increase in 

that region at that particular time. It would, effectively, not show up in our data. This results in the first trough 

after the first peak in Fig. 1. 

The n = 3 mode, with four nodes, oscillates three times as fast as the n = 1 mode. So by the time of 

recombination, it has oscillated ¾ of a full cycle (270o in phase). This results in two rarefied humps and one 

compressive hump (an overall regional average of rarefied). This shows up as the second peak in Fig. 1. 

Higher modes lead in similar fashion to subsequent troughs and peaks in Fig. 1. 
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2.9 The Last Scattering Surface 

For us, as we look out into the universe, we look into the past, due to the great distances light must travel to 

reach us over the history of the universe. Looking in any direction, the light from recombination (CMB) reaches 

us from the same distance away, from all directions, at the same time. Thus, it is effectively coming, from our 

perspective, from a vast shell at a distance all but several hundred thousand light years from the edge of the 

visible universe. Hence, that shell looks to us like the surface of a giant sphere. 

Since this spherical shell represents the last light to be scattered from primordial free baryons, it is call the 

last scattering surface (LSS). 

The modes of Fig. 5, and higher modes, we see now are those from the LSS. But the LSS is best treated in a 

spherical coordinate system and we have been working with waves in a Cartesian system. The next two Sects. 3 

and 4 show how we go from that Cartesian system to the spherical system in which our measurement of the 

CMB is carried out. 

3 Plane Standing Waves in a Spherical Analysis 

3.1 Graphically for Simplified Case 

Consider one plane wave of the fundamental baryon acoustic mode (similar to n = 1 in Fig. 3). Pretend, for 

the sake of this discussion, that at the time of recombination, the wave extends in its direction of travel across 

the universe. That is, over each length L of Sect. 2.3, the fundamental standing wave is repeated. Things are 

actually far more diverse than this with various modes overlapping in various directions all over the place. 

However, we simplify here to make a point. We represent this simplification in Fig.  5. 

Fig.  5 is almost self-explanatory. The fundamental wave of the figure is frozen after recombination. The 

baryons were most compressed at the peaks right before recombination, so photons that emanated from those 

regions are hottest (higher frequency). The nodal regions were not so compressed, and the photons from those 

are colder (lower frequency). 

Us

Source location of 
light we see shortly 
after recombination

Hotter 
(peaks)

Colder
(nodes)

No nodes. Almost 
uniform sky seen.

L

   

Source location 
of light we see 
somewhat later

Four nodes. 

Ripples seen in 
CMB temp        

Source location 
of light we see 
even later

Eight nodes. More 
ripples (waviness) 
seen in CMB temp  

 
Figure 6. Over Time, Plane Waves Appear As Higher and Higher Modes on Sphere 

from which Light Reaching Us Left 
 

Just after recombination (left most part of Fig. 6) light from the time of recombination had not traveled very 

far to reach us, so we can’t yet see much variation in temperature of the photons reaching us. Somewhat later 

(middle part of Fig. 6), the light reaching us from that time is from further away, so we start to see some nodes. 
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At a later time, we would see more nodes, as in the right hand part of Fig.  5. As time goes on, we would see 

more and more nodes (higher modes) appearing on the spherical shell of the last scattering surface (LSS). 

Note that if the middle figure were just a bit earlier, with the circle just touching the dark lines (nodal 

lines), we would see a quadrupole (2 colder regions and 2 hotter regions in 360o). Higher and higher n-poles 

appear as time goes on. At the present time, a fundamental standing wave from recombination of the ideal wave 

shown in Fig. 6 (which is not the case in nature) would appear to us to have hundreds of nodes, spaced a little 

less than one degree apart. 

3.2 The Real, Not Ideal, Case 

Of course, we don’t have the ideal situation as in Fig. 6, where a single wave form repeats itself perfectly, 

over and over, across the universe. What we actually have are a whole slew of small waves of various lengths 

between humps (see Fig. 3) all over the place, depicted schematically in Fig. 7. 

 

 

Figure 7. Some Local Gaussian Shaped Temperature Standing Waves on Last Scattering Surface 

                                            (Only lower modes shown) 

For a local fundamental wave (one hump, n = 1) the space between nodes at our present time would be a 

little less than one degree. 

3.3 Converting Plane Waves to Spherical Coordinates 

Because a plane wave, such as those of Figs. 5 and 6, appears to us as ripples on a spherical surface, our 

preferred method of analyzing data from those ripples is with a spherical coordinate system. To do that, one 

needs to convert a plane wave expressed in Cartesian coordinates (which is the easiest way to express a plane 

wave) into spherical coordinates. This is done via a mathematical relation known as Rayleigh’s plane wave 

expansion, which we will present after discussing spherical harmonics in Sect. 4. 

4 Spherical Harmonic Analysis 

4.1 Background 

Our data is a map of the temperature variations of the cosmic microwave background (CMB) radiation in 

the sky, and thus is taken effectively over a spherical shell. So, if we want to break down the temperature signal 

we see via a modal analysis, it is best to use the spherical analog of a Fourier spectral analysis, i.e., spherical 

Symbolized as

Only waves on last 
scattering surface shown. 

Others spread everywhere.
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harmonic spectral analysis. The central concept behind spherical harmonic analysis is explained briefly in the 

following paragraphs, with a more in depth treatment in Appendix A. 

A spherical harmonic series parallels the Fourier series, but we use spherical coordinates  and . rather 

than Cartesian ones.  
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Unfortunately, the spherical harmonics  lmY ,   are not of as simple a form as the sines and cosines of the 

linear dimension case. (See Appendix A for an extensive development of spherical harmonics.) However, just 

as the Fourier components (the harmonics, one for each n value in 1D) are orthogonal over a given spatial 

interval, the spherical harmonics  lmY ,   are mutually orthogonal on the surface of a sphere (over the intervals 

0 <  <  and 0 <  < 2). 

(2) is what is used in quantum mechanics for the hydrogen atom solution to the Schroedinger equation in 

spherical coordinates, so you have probably seen a relation like this before (with a complex wave function , 

rather than a real f..). Each alm represents the amplitude of a particular spherical harmonic component in the 

summation. In the hydrogen atom we were also concerned about the r direction and had a separate solution 

which was only a function of r (the Shroedinger equation was separable into a purely r dependent part and a 

part dependent on  and . Here we ignore the r dependence since we are only concerned with describing a 

function [the temperature variations] of angular location, i.e., effectively on the surface of a sphere.) 

The "l" index, an integer, is associated with the number of spatial oscillations (nodes, to be precise, equal to 

l + 1) in the  direction in spherical coordinates, and "m", the number of spatial oscillations (nodes) in the  

direction. m, also an integer, varies from "– l" to "l" (recall the hydrogen atom). For example, the l.=.0 mode has 

zero oscillation in the  direction, i.e., a monopole, or constant value over the whole sphere, that sets the overall 

scale. l=1 is a dipole: one full oscillation over the sphere in the  direction. Go to higher and higher l values, and 

you get more spatial oscillations (and therefore smaller wavelength) over the sphere surface. The l and m 

integers of spherical coordinate analysis are analogous to the nx and ny integers of (3) for Cartesian coordinate 

analysis. The alm are analogous to the Fourier amplitudes 
x yn nA . 

4.2 Finding the alm 

Note that since the Ylm are orthonormal and complete over a sphere at fixed radius r (see Appendix A, Sect. 

11.4 pg. 30)  the alm can be determined (Sect. 11.5.1 pg.32, eq. (81)) as 

    
2

0 0
sin

*
lm lm

a Y , f , d d
 

         . (4) 

4.3 CMB Spherical Harmonics 

Note with the CMB that we are dealing with a scalar function over the sphere surface, i.e., the temperature 

T. For us, 

    f , T ,     (5) 
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The l = 0 component (zero spatial oscillation) spherical harmonic in (2) is Y00 = 1, so a00 would equal the 

mean temperature T = 2.725oK, which is the constant background over the entire sky. The variation from the 

mean, T, as a function of  and , are analyzed in terms of its spherical harmonic components  lmY ,  for l > 

0. Because T is a scalar, there are no issues of what direction our harmonic spatial waves are oscillating in. That 

is, we don’t have to worry about longitudinal vs transverse directions for a scalar. Our temperature waves are 

scalar waves, so variations are merely numbers. 

4.4 Expressing Plane Standing Waves in Spherical Coordinates 

4.4.1  A Simple Complex Sinusoid 

The relation alluded to in Sect. 3.2 for expressing a plane standing wave in spherical coordinates is known 

as Rayleigh’s plane wave expansion. (See http://en.wikipedia.org/wiki/Plane_wave_expansion.) We state it here 

without proof as (6). For a single (complex) sinusoidal wave of unit amplitude with wave vector k (having wave 

number k pointing along unit vector nk), where r is the vector from the origin to the point in question (having 

length r pointing along unit vector n), where k, k and ,  are the spherical coordinate angles for nk and n, 

respectively, and where jl (k.r) are spherical Bessel functions, 
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4.4.2 Arbitrary Plane Wave Shapes 

Any wave shape other than a sinusoid, such as a sum of local Gaussian waves over the whole sky (Fig. 7. 

pg. 7), can be expressed, in the spirit of Fourier harmonic analysis, in Cartesian coordinates (bounded by a box 

Lx by Ly by Lz in the discrete solution case) as 
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The same wave shape can be expressed, in the spirit of spherical harmonic analysis, as 

      
0same wave

form, spher
  coords

 
l

lm lm

l m l

lf r , , a j kr Y ,   


  

 �����
 (8) 

By using (6) in (7) and equating the result to the RHS of (8), one can obtain relationships between the alm 

coefficients of spherical harmonic analysis and the 
x y zn n nA (or A(k)) of Cartesian harmonic analysis. We will 

keep things simple at this point and hold off until Sect. 7.4 to do this. For now, we simply note the implications 

of doing so. 

Bottom line: If we have a theory developed for standing wave formation in Fourier components in Cartesian 

coordinates, we can deduce the alm we would expect to measure for that formation in a spherical coordinate 
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system. Conversely, if we have data, i.e., the alm, taken in a spherical coordinate system, we can determine the 

corresponding Fourier components 
x y zn n nA  (or A(k)) for theoretical analysis. This is done in analyzing the 

CMB.  

5 The CMB and the Amplitude alm of Each Spherical Harmonic Ylm 

5.1 Measuring for the CMB 

The spherical harmonics Ylm, individually, are not pure sines or cosines, though they are oscillating spatial 

wave forms. (See Appendix A, pg. 29, eq. (65) for the  dependence of several of the lowest modes.) Showing 

them graphically in what follows would not be easy, so we won’t do that. However, the alm amplitudes of (2) 

and (4) are analogous to amplitudes of sine waves. 

5.2 Measuring the CMB Amplitude and Variance  

5.2.1 Measurement in Our Universe 

Recall the CMB radiation displays the acoustic standing wave patterns that existed right at recombination. 

In other words, we have a cosmic snapshot at one time (recombination), and for any given mode (such as the 

fundamental with n = 1), all localized plane waves everywhere would be in phase. (See Fig. 5, pg. 5.) But the 

heights of the individual standing waves of the same mode would vary from individual wave to individual 

wave. 

As shown in Sect. 4.4.2, pg. 9, the sum of many plane waves of many modes at many different locations 

can be converted to spherical harmonic representation with a given amplitude coefficient alm associated with 

each Ylm. Thus, the particular alm we measure would be those at the time of recombination in our universe. In 

other universes with the same laws but different initial conditions (different set of random density fluctuations), 

at their recombination times, we would have different alm. 

5.2.2 Measurement Over an Ensemble of Universes 

Consider having an ensemble of universes we could collect data from. Each is structured in the same 

manner as ours, with the same physicals laws, particles, and parameters (same curvature, baryon density, dark 

matter, dark energy, photon density, etc.) However, each has different initial conditions, i.e., random QM 

fluctuations at the onset of inflation, and these occur randomly throughout members of the ensemble. 

If we did have a lot of universes similar to ours and could make many measurements (one in each such 

universe), a given alm would vary in value between them. It would be positive in approximately half of them 

and negative in half, with the average alm over all universes tending to zero as the number of universes got 

large. Since our mean value for alm (l > 0) would tend to zero, it is not of great use to us as a characterizing 

parameter of the CMB. 

The variance (or, equivalently its square root, the standard deviation) of alm (l > 0), however, is related to 

the squares of the alm and thus must be a positive number, and not tend to zero. It would give us a measure of 

how great a contribution a particular spherical mode (given l and m) makes to the physics of universes like ours. 

If we could somehow get an experimental value for that variance of alm over an ensemble of universes, we 

would, as the saying goes, “be in business”. 

There actually is a trick that does something close to this, and we discuss it in the next section. 
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5.2.3 A Trick to Get Many Measurements from Our One Universe  

We don’t have any extra universes similar to ours we can access to make extra measurements of alm in 

each, so what do we do? 

If we consider that for given l, each m is equally likely to have the same measured alm value, then 

measuring those m modes effectively gives us what we would get from extra measurements in different 

universes. If we average alm (l > 0) over all m for a given l, we will tend to get zero, just as we noted in Sect. 

5.2.2 for an average over different universes. So, mean value for alm (l > 0) over all m isn’t of much use to us. 

 However, if we average the square of alm over all m for a given l we will tend to get a non-zero value, such 

as we noted in Sect. 5.2.2 for different measurements in different universes. Since – l < m < l, we have 2l + 1 

values of m to use. For fairly large l, this essentially means good statistical values approaching the true values to 

high confidence. 

Thus, we want to compute, for each l value, the variance, which is labeled Cl, as 

2 2 1
no sum on 

2 1

where the average symbol  is considered to be for all values (given a single value) in our universe now.

l
* *

lm lm lm lm lm lm l

m l

a a a a a a C l
l

m l





   
 

(9) 

Caution that in the literature, Cl is sometimes taken as the average over all m values as above, and 

sometimes as just the value for a single m, as below. 

         Sometimes one sees     

where the average symbol  is considered to be for a single value (and single  value) over many universes.

* *
l m lm l m lm l l m m la a a a C

m l

       
 (10) 

The connection between the two versions lies in the presumption that (10) for given l, over a large number 

of universes, would be the same for any m (each m mode would tend to have the same power). Thus, the 

average over all m, for given l, as in (9), would tend to equal (10). (10) is theoretical (we can never measure 

other universes), but (9) is something we can measure experimentally with the CMB data. We can, in fact, get 

2l + 1 separate measurements, implying, for large l, considerable confidence the computed value (9) is an 

accurate reflection of what is really going on (and not a statistical aberration.) 

Since power of any wave is proportional to the square of the amplitude of that wave, the variance can be 

thought of as a measurement of the power of the l mode (including all m values for that l for (9)). Plotting Cl vs 

l is called a power spectral analysis. (See Appendix B for an introduction to [review of] the theory of power 

spectral analysis.) Subject to some further considerations to be discussed below, for the CMB, this gives us the 

power spectral analysis of Fig. 1 that has become so famous. 

Note, in passing, that a system displaying the same statistics over many measurements in time or space as it 

does over many measurements from different similar systems in an ensemble is called ergodic. Here we are 

averaging over different measurements in space (spherical coordinate space) with the presumption that gives us 

the same statistical results as measuring over different universes. So our system is an ergodic one. 

5.3 The Key Relationship 

Note that if we use (4) with f..() = T() in (9), we get 
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 (11) 

To streamline notation, we can use unit vector notation, where n is the unit vector pointing in the  

direction and n′ is the unit vector pointing in the .′.′ direction. Thus, (11) is re-written as 
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 

  n n n n

. (12) 

5.4 Finding Cl Experimentally 

We have a data set of discrete points of the CMB where each point has a T value and an associated ,  (or 

equivalently an n). That is, we have T() = T(n) in digital format. We can process this data via computer in 

either of two equivalent ways. The second is simpler and is preferred. 

First way 

Step 1. Use f..() = T() = T(n) in (4) to determine alm. 

Step 2. Use alm in (9). 

Second way 

An equivalent, and one step way, is simply to use (12) (which is simplified below in (14)). 

5.5 Things to Know about Cl 

5.5.1 Nomenclature and Units 

Cl is the variance of the spherical harmonic amplitudes alm for fixed l. It is also known as the l component 

of the power spectrum of the CMB (square of wave amplitude is proportional to power in a wave). Further, in 

its dependence on l, it is known as a correlation function, for reasons discussed in Sect. 5.5.2. 

If f..() = T() in (4) and the spherical harmonics Ylm are unitless (which they are), then the alm have 

units of temperature. Hence, Cl, via (9), has units of (temp)2.  

5.5.2 Cl as a Correlation Function 

Consider (12), where for two different locations on the sphere of the CMB (directions we see in space) n′ 

and n, the values of T are particularly high, i.e., local maxima. There exists a certain Ylm at a given l which also 

has peaks (local maxima) at these locations. Thus, in the integral of (12) this particular contribution, from the T 

values at the two points, and the Ylm values at those points, will make a larger contribution to the value of Cl 

than if the same pair of points did not display local maxima. 

Thus we will get larger values of Cl for a given l if there are peaks in the sky correlated with the peaks we 

find in Ylm for that l. Thus, we say Cl represents a correlation between points a certain distance apart in the 
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CMB. Actually it is a measure of the correlation between all points integrated over the whole sphere for given l. 

The more such points peak at the between peaks distance of the l spherical harmonic, the greater Cl. Thus, as a 

function of l, Cl is a correlation function. 

5.5.3 Independence of Cl from Choice of Coordinate Reference Frame 

One might question, from (12), if we would get different Cl for different choices for our coordinate axes. 

(See Fig. A-2, pg. 27). For example, for a different alignment of our z axis, the values for  and  would change 

for the two different points we integrate over, so one might expect the total integral to be different. However, 

the Cl actually are independent of choice of coordinate axes, as shown below. 

Showing Cl independence from coordinate axes chosen 

We will need something called the addition theorem for spherical harmonics, stated without proof below in 

(13). Note that Pl is the Legendre polynomial of order l. (See Appendix A Sect. 11.1, pg. 24.) 

          
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4 4

2 1 2 1

l l
* *

l lm lmlm lm
m l m l
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l l
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 
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 
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

    
 

  
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���

 (13) 

 n n is the angle between n′ (aligned with ..′, ..′) and n (aligned with ., ..). Using (13) in (12), we have 

      1

4
l lC P T T d d

  
      n n n n . (14) 

Relation (14) only depends on the angle between two points in the sky and the temperature at each of those 

points. Hence, it is independent of the particular coordinate axes alignment chosen. 

Also, (14) seems simpler to evaluate than (12), so my guess (not being a practitioner in the field) would be 

that it is the preferred way to analyze the data. That is, use (14) instead of (12) in Sect. 5.4. 

An Example: The Dipole (l = 1) 

One can best follow the following example by first becoming familiar with Appendix A, Sect. 11.5.5 pg. 

35. Fig. A-3 there shows one of the simplest spherical harmonics, the one for l = 1, i.e., the dipole. In the figure, 

three different dipole alignments along with their particular spherical harmonic coefficients alm (for different m) 

are shown in the same coordinate system. However, an equivalent way to look at the figure is to consider the 

dipole fixed relative to the sky, but with different coordinate systems in each case. The alm for each coordinate 

system (for the same dipole) are different (and are shown in the referenced section). However, in the sum of (9) 

over m, we should get the same Cl in each case. The respective |alm|2 contributions for each coordinate system in 

Fig. A-3 are shown summed together in the following chart. 
 
 

Comparison Chart for Fig. A-3, pg. 36 

(l = 1  1/(2l + 1) = 1/3 in (9)) 

Fig. A-3 a) Fig. A-3 b) Fig. A-3 c) 
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The conclusion: The Cl for the same pattern in the sky is the same as found in any coordinate system. 
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5.5.4 Local Variation Implications for Cl as a Correlation Function 

We could consider either (12) or (14) and what happens for local maxima or minima temperature 

variations, though for simplicity, we will focus on (14). Fig. 8 depicts two local maxima schematically, 

projecting 3D to 2D for simplicity. 

 

                                             

                               Figure 8. Two (Hypothetical) Local Maxima in CMB 

 

In Fig. 8, we have two local solid angle regions where the temperature is higher than surrounding regions.  

That is, over a region of the integration of (14) (or (12) 

    and   both large for  and aligned as in figureT T   n n n n . (15) 

There is some Legendre polynomial Pl
.
′, for some l′, that peaks regularly at the angular distance between n 

and n′. Thus, in the region of higher temperatures, we would get a greater contribution to the integral (14) from 

Pl
.
′ than from other Pl

.. 

       high for regions where  and  at temp peakslP T T     n n n n n n . (16) 

For other regions, Pl
.
′ may or may not peak, but the variation in T does not, so the other regions would not 

contribute so much to the integral (14) for l = l.′.  

       low for regions where  and  not at temp peakslP T T     n n n n n n  (17) 

For other l, and thus other Pl
., the peaks in the Pl

. would not correspond to the peak temperature regions in 

Fig. 8, so we would not get as great a contribution. 

       low for  even in regions where  and  at temp peakslP T T l l      n n n n n n  (18) 

Note also that for l.′, if there were more regions of local maxima in other parts of the sky separated by the 

same angle as for those maxima in Fig. 8, we would have more contributions like that of (16) to (14) and a 

higher value for Cl
.
′.  

Bottom line: For given l, Cl  is greater if there are more local extrema in the sky with angular separation of that 

displayed by the extrema in Pl. Thus, Cl provides a measure of the correlation between number and level of 

variations in CMB temperature the sky for a particular value of l. 

Since l is inversely related to angular separation (angle = 180o/l.), Cl is also represents a correlation between 

local extrema and their prevalence at a given angular separation. 
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5.6 The Variance of the Variance Cl 

Note that Cl is measured only for our universe, so it will have some error in it even for large, but finite, l 

(where we have many m to sample and sum over in (9) or (12)). Of course, we expect the error to be less, the 

larger the l, since there are more samples taken (more m). But there is some error nonetheless. If we had a 

nearly infinite number of universes in an ensemble, we could make a nearly infinite number of measurements, 

and pin Cl down precisely. We are limited, instead, to our 2l + 1 measurements for given l in the one universe 

we do have. 

We express our unknown error in Cl as a confidence level, based on the usual relation for experimental 

standard deviation (19). (It is also common to use N – 1 in the denominator of (19), but cosmologists seem to 

use N.) 

 

 2
1Standard Deviation of  measurements

N
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x x

x N
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. (19) 

For us, x = Cl, our average over all m values (2l + 1 in number), as in (9). We have N = 2l..+..1 

measurements. So (19) becomes 
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So, 
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For some reason I have not been able to uncover, cosmologists assume the summation in the numerator of 

(21) is approximately 2. Thus, 

  2 2
Cosmic variance no sum on standard deviation

2 1 2 1

l
l l

l

C
l C C

C l l


   

 
. (22) 

Strangely, though the LHS of (22) represents a standard deviation (divided by Cl), it is called the cosmic 

variance (one more source for confusion on this issue, as variance is typically the square of the standard 

deviation). For one standard deviation at given l (= Cl), our confidence level is 68%; for two, 95%. These are 

the error bars one sees in a typical plot of the Cl vs l. Note they are much wider for low l, than for higher values. 

Keep in mind the difference between the “variance of the alm”, which is Cl, and the “cosmic variance” Cl 

which is the standard deviation of Cl (divided by Cl). Cl is a “variance” (not really) of a variance (Cl). 

6 Converting Between Cartesian Fourier and Spherical Harmonics Analyses 

6.1 Express alm in Terms of Fourier Amplitude A(k) 

 As foreshadowed in Sect. 3.3, we will now express the spherical harmonic coefficients alm for a given 

CMB temperature distribution in terms of the Fourier component coefficients for the same distribution. We do 

this for the general case where alm can be at any radius r from the origin, not just at the radius of the LSS. 
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We start by repeating (4) for any sphere of radius r, with some alternate notation employing the unit vector 

n from the origin to the unit radius sphere, and with the arbitrary function f replaced with CMB temperature T. 
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 (4) 

We then use the lowest row of (7), repeated below, which describes the CMB temperature everywhere (not 

just on the spherical surface of the LLS). 
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Now use the Rayleigh plane wave expansion (6) 
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to express (7) in terms of spherical harmonics/coordinates. 
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Now put (23) into (4), where we use (78) of Appendix A in the second line, 
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 is at radius  from the origin,

is Fourier coefficient for  wave.

r

A k k

 (24) 

6.2 Express  
*

l l m lmC = a a in Terms of Fourier Amplitudes A(k) 

Now we will express the variance Cl in terms of A(k) instead of T(n) (as we did in (12) and (14)), and do so 

for any radius r. 

First, we start with (9) or (10) (each uses a different way to take the mean), repeated below, 

 
2

no sum on *
l lm l m lmC a a a l   , (9) or (10) 

and insert the last row of (24) into it twice. 
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(25) 

Second, we want to eliminate the primed quantities and simplify. To do this, we note in the last line of (25) 

that 

     0 for *A A  k k k k , (26) 

since A(k) can be positive or negative, and in sums over many universes (or many times or many m), its value 

and its negative will at times pair with the same A*(k′) and those two terms will cancel. Over large sums, 

enough pairings arise to give a total value approaching zero as the number of universes (number of times, 

number of m values) approaches infinity. 

However,  

         2
some factor 0 for *A A A   k k k k k , (27) 

where   2
A k  is a variance in k space, similar in some ways to Cl in spherical harmonic space. This is some 

justification for the following, which is proven in Abramo and Pereira1, 

          2 3
2*A A A    k k k k k . (28) 

With (28), the last line of (25) turns into 

            2 32 *
l l l lml m

l lC i i A j kr j kr Y Y d k
   


   k kk n n . (29) 

Consider that things are isotropic in that waves varying in direction about the origin, but always having the 

same |k| = k, will have the same   2
A k . And our integral in (29) is effectively an integral in k space of a 

continuum of spherical surfaces, where sub-integration is carried out over each surface and then those surface 

integrals are integrated in the radial direction. For each of these spherical surfaces, we can take 

   2 2
A A kk  and use the same orthogonality relation in k space as we used in (24) in r space, to get 
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 (30) 

                                                
1 Abramo, L. Raul, and Pereira, Thiago S., Testing gaussiantity, homogeneity and isotropy with the cosmic microwave 

background, Advances in Astronomy, Vol. 2010, Article ID 378203, 25 pages. http://arxiv.org/abs/1002.3173. See (12) 

and the line after (17). 
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Or 
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and thus, (31) is the relationship we sought between Cl and A(k). Actually, it is a relationship between the 

variance in our spherical harmonic system and the variance in the Cartesian Fourier system. We will have a 

little more to say about this in Sect. 7.4 

7 Plotting Cl vs l 

7.1 Angular Variation 

As shown in Appendix A, Sect. 11.5.7, pg. 38, the angular separation between variations, such as those 

shown in Fig. 8, for a given harmonic mode l., is 

 
o

180
angular variation in radians

l l

 
  

 
 (32) 

7.2 Peaks in Power Spectrum 

It turns out that the fundamental standing wave (see Figs. 3 and 4, pgs. 3 and 3) of length L, via the 

mechanism depicted in Fig. 4, pg. 6, becomes a spherical harmonic with nodes separated by a little under 1o. In 

other words, the Cl for the CMB (see Fig. 1, pg. 1) peaks at about l = 200 or so. 

We will discuss the meaning of this and the other peaks later on. 

7.3 Background in Power Spectral Analysis Needed for Subsequent Material 

In Appendix B, pg. 38, we present a simplified, introductory overview of power spectra and how they are 

derived from the wave amplitude (and wave variance). This information will be needed as a prerequisite for the 

following section. Some readers may already know that material. Some may not, or may be a bit rusty on it. 

7.4 Why CMB Plots Have l(l + 1)Cl/2  on the Vertical Axis Rather than Cl  

The reason we see l(l + 1)Cl/2 on the vertical axis of typical CMB power spectrum plots such as Fig. 1, 

pg. 1, has to do with our conversion from Fourier analyses in Cartesian coordinates to spherical harmonic 

analysis in spherical coordinates (Sect.6.2, pg.16) plus our desire to work with spectral power (rather than 

variance) plots having log scaling on the l axis. 

The theory of inflation and subsequent expansion posit an effectively uniform (subject to subtleties) 

distribution of initial fluctuations in power across all wavelengths k, i.e., scale invariance. On average, no 

fluctuation wavelength has an intrinsic, enhanced power over any others. The dynamics of acoustic wave 

formation change this, of course, but initially, before that got started, the whole thing was egalitarian. 

  Representing this initially democratic situation is rather straightforward in Cartesian space, where each 

Fourier component of wave vector k would be independent of all others. But this becomes less straightforward 

for spherical harmonics where each different spherical harmonic amplitude alm is a “funky” combination of the 

Fourier amplitude A(k), as shown in (24). 

As we will see, this funkiness of spherical harmonics can be modified in an advantageous way by 

multiplying each Cl by l(l + 1)/2. For the case of a universe with no acoustic wave formation, this should give 
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us a curve in Fig. 1 of a straight horizontal line, subject to some subtleties beyond the scope of this discussion. 

So any changes via acoustic wave formation seen in our universe would show up in the figure as deviations 

from the horizontal line and “jump out” at us. They would not be submerged in other, unrelated variations with l 

due to the funkiness of spherical harmonics. 

7.4.1 Relate Cl to the Temperature Power Spectrum in k 

From Appendix B, pg. 38, relation (114) the Fourier temperature power spectrum PT(k) is, with a 

conventional choice of constant to turn the proportional sign to an equal sign, 

    
2

2

2
2

T

k
P k A k


 . (33) 

As also shown in Appendix B, relation (115), with symbols changed to k space below, shows how, given 

PT(k), we can determine the power over a given interval of a power spectrum, 

  2

1
1 2power between  and 

k

T
k

k k P k dk  ,  

where PT(k) is the power per unit k. 

Solving (33) for   2
A k  and inserting into (31) gives us 

    2
4l T lC P k j kr dk  , (34) 

which relates the Fourier power spectrum PT(k), i.e., the power per unit k, in terms of Cl. 

It is often desirable (and it is in CMB analysis) to work with the power per unit logk, instead of the power 

per unit k. If we plot such a quantity and have a log scale for k on the horizontal axis, one can “eyeball” the 

power in an interval as simply the area one sees under the curve inside that interval. 

To do this, we need to find an integrand for a relation parallel to (34) that is integrated with respect to 

d(logk). To find this integrand, reconfigure (34) as 

    
 
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C P k j kr k j kr k P k d k
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 
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   �����
, (35) 

where we introduce the new symbol  2
T k . For this way of writing Cl,    2

T Tk k P k  is power per unit logk. 

7.4.2 Evaluate the Integral for Cl with the Spherical Bessel Function in It 

From integral tables, we find 

    
 

2 1
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2 1
lj z d

l l
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 . (36) 

From (36), therefore, 
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It is also known that a spherical Bessel function of order l peaks when its argument is approximately given by l, 

i.e.,  2
lj kr peaks at about kr = l. Further, this peak is very narrow with jl effectively zero elsewhere. Hence, 
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over the integral of (35), only a narrow range of k contributes (around k = l./.r), and over this range  2
T k  is 

approximately constant (and equal to   2
T k k l / r  . 

Thus (35) becomes effectively 

      2 2

 only region near
 contributes

4 logl T l

k l / r

C k l / r j kr d k



   
���������

. (38) 

With the last part of (37), we have 

 
 

 22

1
l TC k l / r

l l


  


. (39) 

7.4.3 Back to  the Power Spectrum Plot 

 2
T k  is the power spectrum per unit log k, for Fourier components in Cartesian coordinates. It is the 

number we really want to compare to our theory, which is grounded in Fourier analysis in Cartesian 

coordinates. So a log plot (or any other plot) of Cl (a spherical harmonics based number) vs l distorts our 

perspective on what the real physics is doing (which we grasp more readily in Cartesian coordinate form). 

Thus, if we multiply (39) by l.(l + 1)/2, we get (approximately)  2
T k , our Fourier analysis friend that we 

feel more at home with. 
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2

l T

l l
C k l / r l




   . (40) 

8 What the CMB Power Spectrum Tells Us 

8.1 The First Peak 

The first peak in Fig. 1, pg. 1, is at about 200l   (a little less than 1o), which is related to the width L of a 

fundamental mode. (See Fig. 5, pg. 5.) The length L is the distance sound travels from just after the big bang to 

recombination. Cosmologists can calculate what that length should be. Knowing the distance to the LSS, they 

can then calculate what the angular separation (degrees, or equivalently the spherical mode number l) they 

would see. Note, from Fig. 9, that this angular measurement varies depending upon whether the universe is 

curved or not. 

 
 

Figure 9. Measuring Angles Seen to Ends of a Length L 

 

A viewer looking at the ends of a known length at a given distance away in a positively curved space 

measures a larger angle between the ends than a viewer of the same length and given distance away in a flat 

space. In Fig. 9,  < ′. A negatively curved space would have a smaller angle than a flat space. 



Flat Surface

L

'

Positive Curvature Surface

L
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For the CMB data, the angular measurement of L, the width of our fundamental mode, shows up as the 

location of the first peak, i.e., the l, value or equivalently the angle associated with that l value via (32). If the 

calculated value of that angle (l value) for a flat universe matches the CMB data location, we have a flat 

universe. If the measured angular value is larger (peak moves to the left, to lower l), we live in a positively 

curved universe; if smaller (peak moves to the right, to higher l), in a negatively curved one. 

The data match for the peak location is, to fairly high accuracy, dead on for a flat universe. 

Note that subtleties and uncertainties exist in the calculation and the measurement, and other parameters 

affect peak location to some degree as well, but higher peaks display the same dependence on curvature, so they 

can be used to check and refine the conclusions from the first peak. And for curvature, they check pretty well. 

8.2 The Second Peak 

From Fig. 1, we can see that the second acoustic peak is much lower than the first. To understand this, we 

need first to recognize, from Fig. 5, pg. 5, and related discussion, that the odd numbered peaks (first, third, etc) 

in the CMB power spectrum (n = 1, 5, 9, … in Fig. 5) are, overall, compressive in nature. Even number peaks 

(second, fourth, etc.) in the spectrum (n = 3, 7,  … in Fig. 5) are, overall, rarefied in nature. 

The oscillations result from massive baryons in more dense regions attracting more baryons with the 

resulting increase in baryons heating up the baryons and the photons they are in contact with. The photon 

pressure acts like spring to repel the baryons, so they spread and become less dense. After a time of 

expansion/rarefication the photon pressure decreases and gravity begins to pull baryons back closer together 

again. The whole process repeats leading to an oscillation that is analogous to a spring mass system. (See Fig. 

10.) The mass in that system corresponds to baryon mass, the spring to photon pressure. 

 

Figure 10. Analogy of Spring Mass Oscillation to Baryon Acoustic Wave Oscillation 
 
 

Consider a given rarefied region, represented by the initial condition location in Fig. 10. With that same 

rarefied region, if there are more baryons in the adjacent denser region, the attraction will be greater, resulting 

in greater compression. A spring-mass system, like our BOAs, rebounds back to its initial condition (rarefied 

for BAOs) regardless of the extension (compressed fro BAOs). But the extension (compression) is greater for 

greater mass. 

We know the odd numbered peaks represent overall compression; the even ones, overall rarefication. If we 

have greater mass (more baryons) the compression level will be greater, so the odd numbered peaks will be 

more pronounced (higher in our spectral density plot, as in Fig. 1). Thus, increasing baryon number in our 

universe will increase the height of the odd numbered peaks relative to the even numbered peaks. We see this 

effect in Fig. 1, where there is a general trend for peak height to reduce with increasing l. The first peak 

(compressive) is much higher than the second (rarefied), and the third peak is about as high as the second. 
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The bottom line: The relative heights of the odd and even numbered peaks reflect the baryon density. 

Cosmologists can, of course, quantify this to give us a precise value. 

8.3 Higher Numbered Peaks and Parameter Determination 

The heights, locations (l values), and shapes of the peaks in the CMB spectral density tell us a whole lot 

about the various parameters of our universe, such as curvature, baryon density, dark matter density, dark 

energy density, etc. In general, a given parameter can affect more than one peak. For example, curvature affects 

the location of all peaks. 

Conversely, characteristics of a given peak can be affected by more than one parameter. For example, 

different baryon density means a different oscillation frequency (slower for more mass) for all standing waves. 

This will change the value (slightly, as it turns out) of l for each peak, including the first. So, what we said 

before about the first peak determining curvature has to be modified a bit. We also have to take into account the 

shift in l value due to baryon density. Again, cosmologists do this as part of the analysis of the CMB spectrum. 

The above is an example of degeneracy in cosmological parameters, where we need additional information 

from other parts of the CMB spectrum to pin down a particular parameter. 

Note that cosmologists use computer programs (see Sect. 10) to generate model CMB spectra. One inputs 

various parameters (dark energy percentage, baryon density, etc.) and the program spits out a power spectrum. 

By varying the parameters one gets a fit to the data and pins down which parameters yield that fit. See Fig. 11 

for a graphic of what the CMB spectrum would look like for various values of certain parameters. 

 

 

Figure 11. Plots of the CMB Spectrum for Different Values of Key Parameters 

 From webpage of Professors Hu and Dodelson http://background.uchicago.edu/~whu/araa/node15.html  
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From graphs such as those of Fig. 11, cosmologists have determined our universe is flat to high accuracy 

and has values for dark energy of about 69%, dark matter of about 26%, and ordinary (baryonic) matter of about 

5%. The resulting model is called the concordance model, or the CDM model. (for lambda cold dark matter, 

where lambda represents dark energy in cosmological constant form). 

8.4 The Damping Tail 

Note in Fig. 1 that the curve is damped at high l. The reason for this is that recombination did not happen 

instantly, but took some time, some thousands of years, to transpire. In other language, the LSS is not 

infinitesimal in thickness. So, the photons will scatter a few times during this transition period, rather than be 

released unscathed in one grand, fleeting moment to forever hold the patterns impressed on them by the BAOs. 

If the average distance a photon travels is larger than the wavelength of the BAO at a given l, then the 

scattering will tend to smooth out the temperature contrasts at that l value, and thus any peaks at that l will be 

dampened. So, at shorter BAO wavelengths (higher l) power spectrum values will drop dramatically. And that 

is what we see in Fig. 1. 

Other factors such as the baryon density (higher means more scattering of photons) affect the degree of 

damping. So precise determination of the degree of damping helps in pinning down key parameters. 

9 Summary 

We have explored the physical basis of baryonic acoustic oscillations in the early universe, and from that, 

developed the appropriate mathematics, at a relatively elementary level, that lead to the CMB power spectrum. 

We then showed, again at an elementary level, how that spectrum can be used to determine key cosmological 

parameters. 

The presentation has been greater in depth than that of typical CMB popularization websites, yet markedly 

simpler and more rudimentary than that of typical cosmological textbooks. It has been intended to serve those 

with undergraduate, or better, backgrounds in physics, who are not (yet, or ever will be) specialists in the field. 

10 Further Reading 

Professor Whu at the University of Chicago does an excellent job of describing much of the material 

herein, with lots of graphics, on his website http://background.uchicago.edu/~whu/index.html. See also, Max 

Tegmark's page http://space.mit.edu/home/tegmark/cmb/pipeline.html. The math on those pages is not as 

extensive as that found herein, however. 

For a next step, after this document, I recommend “Testing gaussianity, homogeneity and isotropy with the 

cosmic microwave background” by L. Raul Abarmo and Thiago S. Pereira (http://arxiv.org/abs/1002.3173). 

The math in that document is more advanced and more tersely presented than that herein. 

Textbooks on the subject include Modern Cosmology by Scott Dodelson (Academic Press, 2003), Physical 

Foundations of Cosmology by Viatcheslav Mukhanov (Cambridge 2005), The Cosmic Microwave Background 

by Ruth Durrer (Cambridge, 2008) Primordial Cosmology by Patrick Peter and Jean-Philippe Uzan (Oxford, 

2009). These books are quite advanced compared to the present document and represent entire graduate courses 

on the CMB. The present document is a good preliminary introduction to those texts. 

To generate CMB power spectral plots yourself, with different parameters (for dark energy, dark matter, 

baryon density, curvature, etc) go to  NASA’s http://lambda.gsfc.nasa.gov/toolbox/tb_camb_ov.cfm . 
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11 Appendix A. Summary of Spherical Harmonics 

A good reference for this material is Cahill2. What follows is only a summary and be useful primarily for 

those who have studied this before, but are a little rusty. 

To get to spherical harmonics, we have to start with Legendre polynomials. 

11.1 Legendre Polynomials 

Introduction 

We start by noting that any function f.(x) can be expressed as a Taylor power series expansion, 
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Legendre polynomials are of similar form, 
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but are cut off after n terms and have the following normalization (which may seem strange at first but helps in 

the long run) 

     0 1 21 1 1 1n n nP x P a a a .... a         , (43) 

and orthogonality condition (note the interval of integration –1 < x < 1, which again is chosen because it 

eventually helps), 
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(44) says that each Legendre polynomial of order n is orthogonal (over the interval shown) to any monomial xm, 

provided m < n. 

Thus, the first few Legendre polynomials (you can check if they meet the criteria of (43) and (44)) are 
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In a plot, they look like Fig. A-1. 

                                                
2 Cahill, Kevin, Physical Mathematics, (Cambridge) 2013, pgs. 305-424. 



25 

 

 

                       Figure A-1. Plots of the First Six Legendre Polynomials 
 

There are shortcuts to finding Legendre polynomials called the Rodrigues formula ((8.8) pg. 306 of Cahill) 

and a recurrence relation ((8.38) of Cahill). The Rodrigues formula is 
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which you can check to see gives the first few polynomials in (45). 

Helpful Way to Express Legendre Polynomials 

It turns out to help in many things in physics (as we will see shortly for one example), if we take the 

argument x for Legendre polynomials to be cos . That is, in (45) and (46), 
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  
 
 

2cos 11
cos

2 ! cos

n
n

n n n

d
P

n d







 . (48) 

With this substitution x  cos, the horizontal axis in Fig. A-1 would go from  =  (x = – 1) to  =  (x = 

1) with the vertical axis located at  =  (x = 0). P1(cos) vs   would then look like a half cycle of a cosine 

curve. Higher order Legendre polynomials would then be trigonometric functions of  (though a bit more 

complicated that the ones we usually deal with.) 

The integration limits of the orthogonality relations (44) were taken knowing in advance that we would be 

using the substitution x  cos. The 1 to – 1 integration range for x corresponds to 0 to  (which, since that is 

the range of variation of the   coordinate in polar coordinates, we are foreshadowing where we might 

eventually use these relations). See Fig. A-2 below. 
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11.2 Legendre Polynomials Involved in Solutions to Key Physics Equations 

Legendre polynomials help us in solving some key problems in physics, but we have a few more steps to 

go to see how. 

11.2.1 Special Cases of a General Case Type Equation 

General Case Type Equation 

A general from of second order equation one runs into in physics is 

   2 0f g f  x  (49) 

where ∇2 is the Laplacian and g(x) is a general function of space. One example is the time independent 

Schroedinger equation with f = , 

    
 

2
2 2

2

2
0

2
g

h
V E E V

h


    


        

x

x
�����

. (50) 

Special Case, g = constant 

A special case of (49), where g(x) is a constant (equal to k2 below), is referred to as the Helmholtz equation, 

 2 2 0f k f   . (51) 

The solutions to the Helmholtz equation are spatial (static) waves. So one should (rightfully) consider the 

spatial oscillations in the CMB could be described mathematically by the solutions to it. More on this later. 

Note that (51) can be expressed in Cartesian or spherical coordinates (or any other coordinates, though we 

won’t be concerned with those others). In Cartesian coordinates, (51) has solutions of form 

    or 1D caseikxf x sinkx, cos kx, e cos kx i sin kx   . (52) 

Special Case g = 0 

For g = 0, we have the Laplace equation. For f = , the electric potential in a region free of charge, is a key 

relation for electrostatics. For Newtonian gravity, f =  would represent the gravitational field in a region free 

of mass. 

  2
Laplace eq (e.g., electric potential in region of zero charge)     0 where 0g     (53) 

Special Case, Spherical Coordinates with g = g(r) 

Cases where (49) has g dependence only on the radial distance r from the origin of the coordinate system 

used, 

  2 0f g r f   , (54) 

are common.  One example is the Schroedinger equation applied to the hydrogen atom, comprising an electron 

in the field of a proton’s coulomb potential V(r) = e2/4r. 

    
 

2
2 2

2

2
Schroedinger eq, H atom      0

2
g r

h
V r E E V

h


    


        

�����

 (55) 

For problems of this type, spherical coordinates work best, and we express 2 in terms of r, and .  
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             Figure A-2. Spherical Coordinates with Differential Solid Angle d Shown 

 

Special Case, Spherical Coordinates on 2D Surface of Sphere 

If we wish to examine behavior of something on the surface of a sphere (such as the CMB radiation), we 

can fix r in (54), and examine the resulting solution. That solution would have functional dependence only on  

and . In effect, g(r) = const in (54), and we would essentially be solving the Helmholtz equation (the equation 

for spatially varying static waves) on the surface of the sphere. 

  We should expect f in this case to parallel the solutions to the Schroedinger equation for the hydrogen 

atom with respect to behavior with respect to  and . This should help most readers follow the remaining parts 

of this appendix, since most have some familiarity with that problem. 

11.2.2 Solving the 2D Surface of a Sphere Case 

Separation of Variables to Solve g(r) Case 

In cases where g is a symmetric function of r (purely a function of r and not or ), then the problem of 

solving (49) simplifies. We try a separation of variables approach, i.e., we separate f into functions dependent 

on r, and , as follows. 

    
( , )

( , , ) ( ) ( ) ( , ) works for  only a function of 

Y

f r R r R r Y g r

 

         
�����

 (56) 

We then substitute (56) into (54), where 2  is expressed in spherical coordinates. When we do this (again, 

this is a summary review, we aren’t going through all the steps), we find the following three separated 

equations, each only involving one coordinate. 

    2 21
1 (  an integer. See why below.) Radial equation

d dR
r g r r l l l

R dr dr

     
 

 (57) 
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m l m ld
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xd 
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     

 (58) 

  
2

2

1
sin 1 0 associated Legendre equation

sin sin

d d m
l l

d d


   
         

   
 (59) 

Using separation of variables we have converted a partial differential equation in three variables, which is 

generally very difficult to solve, into three separate ordinary differential equations, each in only a single 

function dependent on a single independent variable. 





r d

r

r sind

d = sindd
dA = r   d 2z

x

y
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Radial Equation (not needed for CMBR analysis) 

While we will ignore (57), as we are only dealing with functions on a spherical surface (at constant r), we 

note that it gives rise in QM to the radial part of the hydrogen atom wave function and in doing so, the 

fundamental energy eigenvalues.3 

 Equation 

The Helmholz equation in  (58), is readily solved as 

   One solution for each value of integer 
2

im

m

e
m.





  , (60) 

where the constant of the denominator is chosen so  is appropriately normalized (over 0 2   ). Note (60) 

expresses a (complex) wave oscillation as one progresses in the  direction. We stated in (58) that m must be an 

integer. The reason is that its solution (60) can only be single valued (as one progresses around  past 360o), if 

m is an integer. The number of nodes in 360o increases directly with m. 

Associated Legendre Equation 

There is a fair amount of algebra involved in determining () of (59), the associated Legendre equation, 

but we cut to the chase here. For each different l and each different m, there is a separate solution to (59), which 

we label as lm. These solutions are proportional to entities called the associated Legendre polynomials, labeled 

as Plm, which are closely related to Legendre polynomials. Thus, where we will later choose the proportionality 

constant to suit out needs, (59) can be re-written 

 

 

 
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for constant  , as

 is associated Legendre polynomial1
sin 1 0

sin sin that solves associated Legendre equation

lm lm

lmlm
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PdPd m
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d d
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   

 

           
     

.(61) 

If one goes through the math (see Cahill, we are only summarizing), one finds Plm in (61) to be (where we 

use the symbol “l” in place of “n” in the Legendre polynomial symbol) 

    

 
associated

Legendre Legendre
polynomialpolynomial

cos

sin cos  and  integers with 
cos

m
m

lm lm
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d
P P l m l m l

d


 




   
��������

�����
. (62) 

The solutions to (61) are related to our earlier discussed Legendre polynomials via (62) where we take x  

cos, as discussed in Sect. 11.1. We note that it is common in the literature to write the argument of Plm as cos 

instead of . In that case, (62) becomes 

        
2

2
cos 1 cos cos  and  integers with 

cos

mm/

lm lm

d
P P l m l m l

d
  


     . (63) 

You can check that the first few Legendre polynomials in (47), used in (63), actually solve (61). 

                                                
3 Note that for the special case g(r) =  constant (54) becomes the Helmholtz equation, and we have a different radial equation (57). For 

that constant equal to zero, g(r) = 0, (54) becomes the Laplace equation, with yet a different radial equation. However the angular 
dependent equations (58) and (59) are the same for g(r) isotopic or constant (whether that constant is zero or not). Thus, in the 

discussion that follows regarding the solutions to (58) and (59), all conclusions are the same for the 3D spherical forms of each of the 

Helmholtz equation (51), the Laplace equation (53), the hydrogen atom Schroedinger equation (55), any case with isotropic g(x) (54), 

and any case on the 2D surface of a sphere (like the CMB analysis). In the literature, one sometimes reads that the solution forms we 

are about to explore (associated Legendre polynomials, in particular) are derived from the Laplace equation, and sometimes from the 

Helmholtz equation or general isotropic form for g. Hopefully, this footnote will avoid confusion when you run into such statements. 
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Using Rodrigues formula (46) (with x  cos) in (63), we get 
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 (64) 

The bottom row of (64) only makes sense if 0m l   with m + l an integer. Since m is an integer (see 

above), then l must be. Further, if m exceeds l, then any derivative in that bottom row will yield zero for Plm. 

Thus, we justify what was stated in (57), (58), (62), and (63) about l and m. 

When all is said and done, the first several associated Legendre polynomials, found via (64), look like 
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 (65) 

To check, and strengthen one’s understanding, any of (65) can be inserted into (61) to verify that they are 

indeed solutions to the associated Legendre equation. 

11.3 Completeness and Orthonormality of Pl
m 

11.3.1 Completeness 

Other than arbitrary constants by which they could be multiplied, all possible solutions to the associated 

Legendre equation are included in Plm of (63), so the set of those solutions shown there spans the space of all 

possible solutions over . This is similar to the 1D spatial (static) wave (Helmholtz) equation (51) where the set 

of all ik xne , where kn = n2/L spans the space of all solutions to that equation over the interval treated. 

Further, we know from the Fourier theorem that the solutions ik xne  span the space of all possible functions 

of x over the interval, not just functions that are specific solutions to the Helmholtz equation. Similarly, the 

associated Legendre polynomials Plm(cos) span the space of all possible functions of , not simply those that 

are solutions to the associated Legendre equation. 

Thus, the set Plm (cos) is complete over . Any possible function of  can be shown equal to a sum of alm 

Plm (cos) over all l and m, where the constant coefficient al′m′ represents how much of Pl′m′ is present. For 

example, in the m = 0 case (no variation in the  direction since eim = 1 for m = 0), any function purely of  

(and not ) can be represented as 

          00 00 10 10 20 20 0 0
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      . (66) 
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11.3.2 Orthonormality 

For same m 

We first state, then shortly after that prove, the orthogonality of Plm which have the same m, but different l. 

Note that since Plm is real (see (65), for examples), we do not need to take the complex conjugate of Plm times 

Plm, as is done, for example, with quantum wave functions. 

    
1

1
0 , same cosl m lmP x P x dx l l m, x 

   . (67) 

The inner product of Plm with itself (same m and same l) represents the normalization and is (reference to proof 

given below) 
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We can combine (67) and (68), and substitute cos for x, to yield the orthonormality condition for Plm 
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 (69) 

For different m 

On pg. 319, Cahill derives the orthonormality relations for the Plm, for different m, but, as we will see, we 

will not need these. 

Proof of (67) 

To prove the orthogonality condition (67), we start by rearranging (61), 
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sin cos 1 cos
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(70) 

If we consider m fixed, then (70) can be considered an eigenvalue problem with eigenfunctions Plm and 

eigenvalues l.(l + 1). Eigenfunctions are always orthogonal. Thus, for integration over the stated interval, we 

have (67). 

Proof of (68) 

If I have time, I may someday write out the proof of (68), which I never actually looked at myself before 

writing this. (I had simply accepted the result, like one accepts integral formulas in a table without working 

them through oneself.) For now I simply note that it is only algebra, comprising substitution of the last line of 

(64) with cos  x into the LHS of (68) and working it all out. The full proof can be found in Arfken and 

Weber4. Cahill merely states the result (69) without proof. 

11.4 Completeness and Orthonormality of Yl
m () 

11.4.1 Completeness 

We have realized that Plm is complete over  for the interval 0 to . Using similar logic as we had with the 

1D Helmholtz equation (51) and its solutions being complete (spanning the space of all functions over x), the 

                                                
4 Arfken, George B., and Weber, Hans J., Mathematical Methods for Physicists (Academic Press, San Diego) 1995, pgs. 726-727. 
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solutions eim to equation (58) (identical in form to the Helmholtz equation) are complete over  for the interval 

0 to 2.  Thus, from (56), where we now realize we need the l and m sub/superscripts, 

          
2

, constant cos no sum on 
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lm lm m lm

e
Y P m


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         (71) 

is complete over the 2D space defined by 0     and 0 2   . Any function of  and  can be described by 

a sum over l and m of terms alm Ylm, where the alm are appropriate constants. 

11.4.2 Orthonormality 

Normalization 

Using (71), integrating   2

lmY ,   over all  and  (effectively integrating over the surface of a sphere with 

radius r = 1 in Fig. A-2 pg. 27), and normalizing by setting the result equal to unity, we have 
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 (72) 

From the last line of (69), with the last line of (72) equal to one, we see 
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Thus, from (71) we see the spherical harmonics are 
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Our normalization constant is the quantity inside the square root sign above. 

 Orthogonality 

For the same m and l′ ≠ l 

From (69), we see that for the same m and any l′ ≠ l, Pl′m and Plm are orthogonal over . Thus, Yl′m and Ylm 

must also be orthogonal over an entire sphere, i.e., 
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 (75) 

(75) tells us that for the same m and l′ ≠ l, the spherical harmonics are orthogonal. 

For different m′ and m and any l and l′ 

 For different m′ and m, regardless of l′ and l,  we have 

 

     

 
 

 
 

   

 
 

 
 

   

2
*

0 0

2

0 0

0

2 2

, , sin ,   and may be same or different

! !2 1 2 1
cos cos sin

2 ! 2 !

! !2 1 2 1
cos cos sin

2 ! 2 !

l m lm

lm

l m lm

l m

im im

Y Y d d m m l l

l m l ml l e e
P P d d

l m l m

l m l ml l
P P d

l m l m

 

 



 

 

      

    

  

 



 

 

 

    


  

    


  

 

 

  2

0

1
2

0 for 

0.

im im

m m

e e d
  

 

 




�������

(76) 

(76) tells us that any two spherical harmonics with different m values are orthogonal. 

For the same m and l 
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(77) tells us that the inner product of a spherical harmonic with itself equals one. This is our normalization 

for spherical harmonics. 

Bottom line: Two spherical harmonics are orthogonal (inner product over a spherical surface is zero) unless 

both have the same l and m. In that case the normalization is given by (78) with m′ = m and l′ = l. 

    
2

0 0

Spherical harmonics
sin
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*

lm ll m ml m
Y , Y , d d

 
              (78) 

11.5 Expanding a Function of  and  in Ylm 

11.5.1 The Expansion 

Since the spherical harmonics are complete, we can expand any smooth function f..(..) in terms of them. 
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Noting that 
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we realize that we can find all alm for any f..(..) via 
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11.5.2 Note for m m 

Note from (65), 
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Using (74) with m  – m, incorporating (82), and recalling that Plm is real, we find 
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11.5.3 Ramifications of m m Result 

In our summation (79), for every spherical harmonic term almYlm there is a corresponding term 

   * *1
m

l m l m l m lma Y a Y    . (84) 

So, with appropriate choice of relation between alm and l ma  , i.e., 

   *1  real number
m

lm l ma a    , (85) 

the m and – m terms summed would be real for a given l. That is, 

      * * *1 real function no sum on  or 
m

lm lm l m l m lm lm l m lm lm lm lm

lm
a

a Y a Y a Y a Y a Y Y l m        
�����

.(86) 

Also, for m = 0, Yl 0  is real. See (74) and recognize that Plm is real for any m. 

Bottom line: f in (79) can represent a real number (such as temperature of the CMB) even though the Ylm are 

complex. 



34 

 

11.5.4 Comparing to Fourier Analysis in the Cartesian Case 

We can compare the representation of a function of  in terms of a series of associated Legendre 

polynomials to the representation of a function of the Cartesian coordinate x in terms of as series of sines and/or 

cosines (or equivalently, the real and/or imaginary part of eikx). Before doing so, we recall some trigonometric 

relations we will use along the way. 
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Now take (79) with  = 0, i.e., consider f = f..(), and insert (74). 
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Compare this to a typical Fourier series expression for a function h(x), 
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Now look at (65) (repeated below for convenience) to see what some of the associated Legendre 

polynomials used in (89) look like. 
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We then convert (65) using (87) and (88) to get 
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The point is that terms in Plm of order l have highest order exponents in both sine and cosine factors 

combined of l as shown in (65). These can be converted, as shown in (91), into expressions having terms with 
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only sine and/or cosine of angles l (l times ..) not raised to any power. But those are exactly the kinds of terms 

we find in (90), for l  n and   x. 

In essence, the summation (89) is the same summation as (90). For example, for the 3cos3a x  term in (90), 

we would have a comparable term in (89) 3cos3c  , where the c3 is a combination of different alm. Each term  in 

(90) has a corresponding term (when we add together all the appropriate alm in the right way) in (89). 

Bottom Line: The sum of all spherical harmonics in   to yield a given function is effectively the same thing as 

a Fourier series summation of sines and cosines to yield the same function. 

2nd Bottom Line: From (91), we see that the order l of a spherical harmonic indicates the number of oscillations 

(in space across a constant radius sphere) from  = 0 to , just as the order n of a term in a Fourier analysis 

indicates the number of oscillations over the given interval from x = 0 to L. 
 
Higher n means more wavelengths inside L. Higher l means more “wavelengths” inside 0 to . (We use quotes 

on “wavelengths” in the spherical case, because (as we can see from the l = 3 case in (91)) a given l harmonic 

includes sub waves that oscillate less rapidly (e.g., the l =3, m = 0 case of (91) has both a cos 3 and a cos  

term, not just a cos 3 term). 

Question. So, one might ask, if we could use either the complicated spherical harmonics or the simpler sines 

and cosines, why not analyze a spherical surface, like the LSS (last scattering surface) using the latter, rather 

than the former? 

Answer. I believe it is for the following reasons. 

1. We can convert readily between Fourier harmonic components in Cartesian coordinates (used to 

deduce conclusions about plane waves from inflation, etc.) and spherical harmonic components in 

spherical coordinates (in which our measurements are done) via the methodology of Sect. 3.3, pg. 7. 

2. It is conventional. 

3. Spherical harmonics are used elsewhere in physics, particularly in QM for the hydrogen atom wave 

function, and physicists are familiar with them. In the H atom case, we had no real choice but to use 

spherical harmonics, because they are eigenfunctions of the Schroedinger equation with the isotropic 

potential energy of the Coulomb potential of the nucleus. The eigenvalues of Ylm are m and l (actually 

l(l+1)), which gave us respectively, the  z direction angular momentum and the square of total angular 

momentum. 

4. Spherical harmonics are eigenfunctions of any system having isotropic g(x) in a governing equation 

like (54). Since one of the foundational postulates of modern cosmology is isotropy, in the long run, it 

should prove advantageous to represent quantities of interest in the universe (like wave patterns in the 

LSS) via eigenfunctions to equation (54) with isotropic g = g(r). 

This would be particularly relevant for other cases involving 3D (unlike the 2D spherical surface of 

constant radius of the LSS). In such cases, we would have a non-trivial equation in r (see (59)), which is 

an eigenvalue problem with eigenvalue l(l + 1). Thus, for each l (denoting a given eigenfunctions of r), 

there is a related eigenfunction of , Plm (for given m). However, any given sine or cosine function, such 

as cos 3, is not an eigenfunction for given l. 

So, if we want to have the advantages of working in an eigenfunction basis for 3D isotropic cases, we 

need to use spherical harmonics, not sine/cosine functions. 

11.5.5 An Example: A Dipole 

Given that we align our spherical coordinate system (See Fig. A-2, pg. 27) in a given direction (say the z 

axis is aligned perpendicular to the plane of the galactic disk).  One might realize that if there were a particular 
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multipole with respect to  (particular l value) aligned with a node right on the z axis, then we could readily 

determine a suitable alm. 

For example, consider the dipole of Fig. A-3, part a), aligned with the z axis. It is described, at least in large 

part, by a temperature variation with  of cos. Note from (74), and (79), 
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From (65), we see the l = 1 terms include 

 10 11 1 1
1
2

cos sin sinP P P      . (93) 

Higher order (l > 1) terms represent higher multipoles and l = 0 represents a constant (no multipole) value 

of temperature with respect to  equal to 2.725oK for the CMB (see dashed circle in Fig. A-3). So we would 

expect the P10 term in the summation (92) to reflect the dipole of Fig. A-3a), i.e., a10 would be much larger than 

any other alm. 
 

 
Figure A-3. Temperature Dipole Aligned in Three Different Directions 

 
 

Similarly, in Fig. A-3b), the dipole is aligned such that the temperature variation, at least in large part, is 

described by sin. Thus, in that case, P11 and P1–1 would be the dominant contributing modes and be much 

larger than a10. For the case of Fig. A-3c), we would have significant contributions from all three Plm. 

We now derive the alm for each of the cases in Fig. A-3 and see if our intuitive statements above regarding 

them are correct. To do this, we first note what the l = 1 part of the spherical harmonics summation looks like in 

general, where we look only at the slice where  = 0, to keep things simple for now. 

General Relation for Dipole with Any Alignment 

 

     
 

 �

 
 

 
 

 
 

1 1

1 1 1 1 1

1 1

10 11 1 1

10 11 1 1

take
=0

1
2

1 !2 1
cos

2 1 !

1 ! 0 ! 2 !3 3 3
cos sin sin

2 1 ! 2 2 ! 2 0 !

3 3 3
cos sin sin

2 2 2

l m m m m

m m

imm
T , a Y , a P e

m

a a a

a a a .





    

  

  


 






 



  

  

 

 (94) 
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Case of Fig A-3 a) 

For the first case in Fig. A-3, we have a simple cosine dependence on , 

  1 cos  = max difference from mean templT , X X    . (95) 

So, in (94), we readily see that 

 10 11 1 1

2
0 0

3
a X a a    . (96) 

Case of Fig A-3 b) 

For the second case in Fig. A-3, we have a simple sine dependence on , 

  1 sinlT , X    . (97) 

The following satisfy (94) and are the alm values for the dipole as shown in Fig. A-3b). 

 10 11 1 1

1 1
0

3 3
a a X a X    . (98) 

So, 

    1

3 3 3
0 cos sin sin sin

2 2 23 3
l

X X
T , X .           (99) 

Case of Fig A-3 c) 

For the third case of Fig. A-3, we have the following values, which we prove are correct below. 

 10 11 1 1
3 6 6

X X X
a a a     , (100) 

Note that the solid line of Fig. A-3c) is described by X.sin.( + 45o). From the trig relation 

   osin sin cos cos sin with    and 45             , (101) 

    o o o
sin 45 sin cos45 + cos sin45 sin cos

2 2

X X
X X        . (102) 

Using our stated values for the alm from (100) in (94), we see it equals (102). That is, 

  1

3 3 3
cos sin sin sin cos

2 2 23 6 6 2 2
l

X X X X X
T ,            , (103) 

A Comment 

I’ve tried to make this simple for illustrative purposes, but the astute reader may have noticed that the a11 

and a1–1 are not uniquely defined above. Any of an infinite number of combinations of them could make (94) 

equal to (97) in Case b), or to (102) in Case c). Had we not limited this case to  = 0, in order to keep things 

simple, we could have shown they were actually unique for the more general case. See Sect. 11.5.3 pg. 33, 

where we show that, in general, for T to be real (not complex), we must have   *1  real
m

l m lma a    . This is a 

further constraint that pins down the a11 and a1–1 values. Note that (98) and  (100) obey this constraint. 

11.5.6 Other Multipoles 

In similar fashion for a sole higher multipole (more spatial oscillations in temperature with  = more 

“highs” and “lows” = more nodes = higher l  value = l′, for this example), the values for al′m in the l′ case would 

dominate over the alm values for other l. 
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In a general case with many multipoles superimposed (as in the CMB), we get a spectrum of alm, the values 

for each l and m reflecting how strong that particular mode is relative to all others in the summation (92). 

The difficult thing about spherical harmonics, as seen by the examples of (65), is that it is not easy to 

visualize the various modes and what physically, exactly, their amplitudes alm represent. For a Fourier series 

like (90), we can envision what each mode looks like, and even draw figures representing the summations of the 

various modes. For spherical harmonics, on the other hand, this is problematic. 

11.5.7 Angular Separation and l 

From Fig. 3-A, pg. 36, one can see that for l = 1, there are 180o degrees between nodes, i.e., there is a single 

variation (“bump”, as it were) over the range of 0    . For l = 2, (think variation over 2, as in (91)) we 

would have three nodes (and two “bumps”), making a single variation (one “bump”) over 90o degrees. For l = 3 

(variation over 3 as in (91)) we would have four nodes (three “bumps”), and a single variation (one “bump”) 

over 60o. We can readily generalize to 

 
o

180
angular variation in radians

l l
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 
. (104) 

12 Appendix B. Introduction to Power Spectral Analysis 

12.1 The Basis in Electronics for Power Considerations 

Consider instantaneous power in an electric circuit 

 instP VI , (105) 

where, for charge q(t.) a sinusoid,  the frequency in radians/sec, and for simplicity impedance Z = pure 

resistance R, 
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Thus, instantaneous power is 
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Since, for T = 1/f = 2/ the period of the oscillation, 
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the average power (time average of the instantaneous power) is 
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The point is the average power P is proportional to 2 times the amplitude of the charge squared A2. 

Now, for q(t) a more general shape (non sinusoid), we can find the Fourier components of q, which when 

added together (or integrated in the continuous case), give us q(t). The amplitude of each such component is, in 
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general, different at each value of , so we label such amplitudes as An (discrete case) or A() (continuous 

case). That is, 
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where we take the cosine parts to be zero, for simplicity, though to be complete for handling any shape q(t), 

they would need to be included. 

So, we would, in general, find a different average power P in (109) for each , and we define 
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In general, when people use the word “power” in the context of spectral analysis, they mean “mean power 

over a full cycle” as in (109) and (111), not instantaneous power, as in (107). 

From (109), we can see that if our Fourier components An (or A()) of q(t.) had the same An (or A()) at 

each n (or ), the Pn data points (or the P() curve) would rise quadratically with . A plot of P()/2 vs , 

on the other hand would be a straight line. See Fig. B-1. 

 

 
Figure B-1. Constant Amplitude A() 

 
 

Intuitively, the behavior shown in Fig. B-1 could be expected. A sinusoidal wave of the same amplitude as 

another sinusoidal wave, but oscillating faster should have more power in it. Power depends on both the 

amplitude of the wave and the rate at which it oscillates. 

White noise is defined as a straight line P() vs  curve, as shown in Fig. B-2 below. Each sinusoidal 

component at each  has the same power density (power per unit ), but as can be seen in the RHS of the 

figure, different amplitude A(). 

 

  
Figure B-2. White Noise = Constant P() 

 
 

Fig. B-3 shows what white noise would look like in time, where the instantaneous contributions of every 

component of Fig. B-2 are summed as in (110) (actually, integrated for the continuous case of Fig. B-2) at each 

point in time. 



P()



A()  P()___
 

 

A()P()    A()2
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Figure B-3. White Noise Instantaneous Power from All Components vs Time 

 
More general type systems show varying behaviors, with plots that are more complicated than the ones 

above, but the relationship 
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always holds at each  for any system. 

12.2 Extrapolating to Other Types of Systems 

The relations we developed in the prior section are commonly used for other fields outside of electronics. 

For spatially varying waves, for example, all of (105) to (111) can hold with different physical quantities, e.g., 
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For the CMB, we would take S = T, temperature (not period T as the symbol was used for above). And thus, we 

can immediately deduce, in parallel with (109), that 
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 (114) 

In this case, P(k) vs k would be the temperature power spectrum. (Power is now being used in a more 

general, mathematical, sense, rather than being the kind of power one is accustomed to dealing with in 

mechanics and electronics. That is, power in the present sense does not have to be the time rate of change of 

work energy). 

In the CMB analysis the above (Cartesian coordinates based) Fourier harmonics relationships are converted 

to (spherical coordinates based) spherical harmonics relationships, as shown in Sect. 6. 

Note that units of P(k) are power per unit k. When we integrate P(k) over an interval k, we get the total 

power in that interval (a very useful relationship in many areas of physics and engineering). 
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Again, “power” in other contexts can mean something other than power as known in typical physics 

courses, and with other systems, such as that of (113), (115) holds with the surrogate symbols of (113) replacing 

those shown in (115). 


